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Hi-C Data Normalization 
What is it, and how should you apply it in your Hi-C analysis pipeline? 

 

Introduction 
Based on Sanger shotgun sequence data, 
the draft human genome was first 
published over two decades ago. Since 
that time, next generation sequencing 
(NGS) technologies have emerged and 
alternative library preparation techniques 
are available empowering researchers to 
analyze genomic complexity at ever 
increasing depths.  
 
As transformational as NGS has been, it 
has not come without its technological 
challenges and limitations. The research 
communities collective experience in over 
20+ years of sequencing has uncovered 
data biases that must be accounted for 
during our downstream data analysis and 
interpretation. Systematic challenges and 
limitations associated with all sequencing 
platforms include: 
 

• DNA fragmentation bias. 
• GC content bias. 
• General mappability challenges. 

 
Biological factors also contribute to bias 
but vary by specific technique. 
 
Hi-C 
One notable library preparation technique 
is Hi-C (https://cantatabio.com/). This 
method makes use of proximity ligation 
technology to enable the capture of 3D 
information alongside primary sequence 
data thereby offering insights into how 
DNA physically interacts in three-
dimensional space.  
 
Much like standard whole genome 
shotgun sequencing, Hi-C data captures 
genetic alterations including single 
nucleotide variations (SNVs), small 

insertion/deletions (indels), copy number 
variations (CNVs), and structural variations 
(SVs). However, the addition of 3D 
information has opened the field of 3D 
genomics and enabled the identification 
of topological features such as 
chromosomal territories, active/inactive 
compartmentalization, topologically 
associated domains (TADs), and 
chromatin loops. 
 
Briefly, the Hi-C methodology involves the 
following five core steps:  
 

1. Chromatin is crosslinked to “lock” 
chromatin interactions in situ. 

2. Chromatin is fragmented to create 
free ends for ligation. 

3. Free ends are ligated. 
4.  A sequencing compatible library is 

generated. 
5. Paired end sequencing is 

performed on a compatible NGS 
system. 

 
When mapped back to the reference, the 
resulting paired-end data contains 3D 
structural information. Paired-end reads, 
that may map at a distance from each 
other in linear sequence space, are 
indicative of  genomic regions found in 
close proximity in 3D space. This 3D 
genomic structure is intimately involved 
in gene regulation, controlling access of 
the myriad of regulatory elements found 
in the genome’s “dark matter” to gene 
promoters. 
 
Hi-C Data Normalization 
While Hi-C data shares all the biases 
inherent to NGS platforms, the data is 
sufficiently similar that these biases can 
be accounted for using the standard 
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approaches developed for shotgun 
libraries. However,  a source of bias unique 
to this datatype is the exponential decay 
of interaction frequency with distance 
between two genomic regions. That is, the 
closer any two given regions are in 
genomic coordinate space, the more likely 
those regions are to from a chimeric 
ligation product. Therefore, computational 
tools designed to make insights into 3D 
genomic structure need to account for 
this probabilistic dependency. Enter the 
need for data normalization.  
 
Analysis standards for Hi-C data are still 
emerging.  While numerous procedures 
have been developed to remove these 
systematic biases, widespread community 
acceptance of what should be the “gold-
standard” practice for data processing has 
not yet fully solidified. The consequence 
for new, or even experienced genomic 
scientists, is difficulty navigating the 
many data processing options available.  
 
Available Tools 
Available normalization approaches fall 
into one of two buckets. Initial attempts at 
correcting for systematic biases used 
explicit approaches. Designed to directly 
account for each individual source (GC, 
fragmentation, mappability, enzyme cut 
sites etc.), explicit probabilistic models 
account for the expected interaction 
frequency between any two pairs of reads. 
Since explicit approaches assume these 
biases are known upfront and are 
accurately accounted for when 
calculating the correction model, they rely 
on the main sources of bias being well 
understood a priori.  
 

There are two main options for 
explicit normalization 

• The initial probabilistic 
model introduced by Yaffe 
and Tanay1. 

• An algorithm built upon the 
same principles called 
HiCNorm2.  

 
In contrast, implicit models attempt to 
overcome the need for a priori knowledge 
by making use of an assumption referred 
to as “equal loci visibility”. In essence, 
implicit approaches assume that any 
cumulative bias would be captured 
directly within the sequencing depth of 
each bin of the contact matrix.  
 

Examples of the implicit methods 
are those derived from century-old 
“matrix balancing” solutions such 
as Sequential Component 
Normalization (SCN)3, Iterative 
Correction and Eigenvector 
decomposition (ICE)4 and the 
Knight and Ruiz (KR)5 method. In 
contrast, chromoR6 uses a Bayesian 
approach, and Binless7, a relatively 
new algorithm, offers a hybrid 
approach, where matrix balancing 
is performed but instead of 
assuming equal loci visibility, it 
attempts to build a background 
correction model followed by 
negative binomial regression. Other 
simpler implicit algorithms are 
vanilla coverage (VC; and the 
square root supplement – VCSQ), 
however, these more basic 
algorithms appear to overcorrect 
and are not widely used.  

 
So what does this mean for a researcher 
today preparing their own analysis plan? 
Which method should they choose? How 
does this influence what processing 
pipeline should be chosen?  
 
Practically speaking, the primary 
difference between the two approaches is 
the number of user defined parameters – 
explicitly calculated models require more 
input parameters (i.e. the list of mapping 
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qualities and/or cut sites) than implicit 
approaches offering greater “tuneability”. 
This makes them more appropriate for 
less studied organisms where the main 
sources of biases are likely unknown or 
poorly described. However, the simplicity 
of implicit approaches is a benefit of 
implicit approaches when working with 
well-studied genomes such and human 
and mouse making them the de facto 
standard for most Hi-C work. 
 
Thankfully, it appears the field has largely 
settled on three main data pre-processing 
pipelines and these pipelines have 
standardized two data output file formats 
(i.e. the interaction frequency matrix 
integral to any Hi-C dataset).  
 
Juicer8 is an all-in-one pre-processing 
pipeline developed by the Aiden lab. The 
main output is a *.hic file. This file is a 
compressed storage format of the 
interaction matrices binned at multiple 
resolutions. A number of downstream 
computational tools support *.hic files as 
input and perform the common 3D 
genomic analyses mentioned above 
(TADs, loops, etc.). This format also feeds 
into various visualization tools making it a 

common choice among 3D genomics 
researchers.  
 
Cooler9, a more recent entrant, was 
developed to make use of the HDF5 data 
structure. This format offers 
computational advantages with respect 
to data structure flexibility. The main 
output of the cooler pipeline is a *.cool file 
(and optionally a multidimensional 
version –  *.mcool), and is becoming 
increasingly adapted for downstream 
analyses but is not as broadly accepted as 
the *.hic format.  
 
HiCExplorer10 is suite of tools which 
provides a solution for end-to-end Hi-C 
data analysis and supports both its native 
matrix format, as well as cool files making 
it a good option for downstream analyses. 
 
All the above processing pipelines offer 
multiple options for normalization. As for 
the most appropriate algorithm to choose, 
many groups have performed a head-to-
head analysis to answer this question. And 
the answer has generally been…unclear.  
 
One of the first comparisons was 
performed in a landmark study of the 
human 3D genome11 where the authors 

Visual Comparison of Normalization Results. Each contact matrix depicts the same 2Mb region on 
chromosome 8 of a Micro-C library that was sequenced with 800 million read pairs. The matrix was 
subjected to different normalization approaches and plotted in R. The scale bar is consistently 
maintained across each normalization approach to better visualize the impact of normalization. This 
image clearly demonstrates the challenges associated with using coverage alone as a normalization 
strategy, whereas the more iterative approaches yield a clearer picture of chromatin interactions. 
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demonstrated a high concordance for 
loop and TAD calls no matter what 
algorithm was used. Ultimately, Rao et al. 
was the first to implement the KR 
method for Hi-C data, having been 
selected mainly because it was 
computationally faster than other 
methods. However, a limitation to the KR 
method is that often fails when the 
contact matrix is too sparse.  
 
For sparce matrixes, the ICE method – 
which ensures convergence – can be 
used. Using a robust balancing method, 
ICE does not fail even for sparse matrices 
but does suffer a reduction in 
performance in the 1M-500K resolution 
range.  
 
Another recent study compared six 
normalization algorithms and came to 
similar conclusions, noting only minor 
differences between the algorithms’ 
performance at different resolutions. SCN 
and KR was noted to perform admirably 
for reproducibility of TAD structure. 
ChromoR, while providing a high 
correlation between technical replicates, 
appears to break down at lower 
resolutions (~1M).  
 
Our conclusion… SCN, KR, and ICE (matrix 
balancing) strategies all perform similarly 
with only minor differences at the low-
resolution range. 
 
Both KR and ICE are common methods 
provided internally for most analysis 
suites. My main choice defaults to KR 
simply because it is offered internally by 
the cooler tools suite, and implemented 
with a solution for when convergence fails 
in the sparse matrix scenario. Indeed, the 
field is still advancing rapidly, and newer 
algorithms (for example Binless) may 
ultimately shift the consensus in the 
future once more studies are published so 
stay tuned.  

 
Comparing Two or More Conditions 
So far, our discussion has only considered 
the scenario of normalization within 
samples. However, biological insights are 
rarely made by analyzing samples in 
isolation. A well-constructed experiment 
often includes some form of a control, or 
more generally, makes a comparison 
between two or more samples or group of 
samples, as these differences are what 
often expose meaningful biology. 
Examples of common types of 
comparisons could be: 
 

1) Wild-type vs. knockout 
2) Drug treated vs. untreated sample 
3) Disease vs. normal tissue 
4) Within-disease subgroup A vs. 

subgroup B 
5) Time course 

 
For our purpose, we can adapt techniques 
developed for differential analysis of gene 
expression. Like Hi-C data, RNA 
sequencing experiments are predicated 
on read abundance measurements, 
making it not only important to scale 
each individual sample by raw 
sequencing depth, but also important to 
remove biases between samples, such 
that between sample comparisons can be 
computed robustly.  
 
Currently, there are only a few methods 
specifically designed for between sample 
comparisons for Hi-C data. 
MultiHiCcompare12 uses a loess 
regression approach, with concepts 
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largely borrowed and adapted from 
experiences in the gene expression 
literature. A more recent approach was 
developed – BNBC13 – which performs 
matrix smoothing on individual matrix 
“bands” prior to batch correction using 
ComBat13. Irrespective of the approach, an 
important consideration with between-
sample normalization approaches is that 
they largely ignore the systematic, 
sequence-dependent biases such as 
mappability and GC content, as they are 
assumed to be common amongst all 
sample conditions.  
 
What does this mean practically when 
considering a Hi-C analysis workflow? 
Does one need to create both within-
sample normalized matrix files in addition 
to the unnormalized, raw interaction 
frequency matrices? In other words, 
should we normalize both individually as 
well as between samples for differential 
analyses?  
 
Conveniently, the answer to this question 
is the same whether using *.hic files or 
*.cool files as the matrix format of choice – 
NO!. One of the features of the 
multidimensional matrix formats is that, 

when normalization is performed, the 
correction weights are stored 
independently of the raw interaction 
count for each bin. The benefit is that 
during the processing steps of your Hi-C 
pipeline, any normalization applied to the 
contact matrix is calculated “on-the-fly” 
during downstream feature calling, thus 
preserving the raw counts. Therefore, one 
may generate a single, normalized 
contact matrix and still access the raw 
counts needed for current between-
sample analysis tools. 
 
To our knowledge to date, no comparison 
has been performed to determine the 
most robust between-sample 
normalization approach. However, our 
internal testing has demonstrated 
acceptable results when using 
multiHiCcompare. 
 
Take homes 
So what have we learned?  
 

1. The most used Hi-C analysis 
workflow pipelines have built-in 
methods for individual sample 
matrix balancing.  

Multiple-sample normalization enables robust statistical detection of differential interactions. A) By 
applying concepts from gene expression, in this case, loess normalization, we can detect differences 
between brain and liver tissues using standard statistical models. B) When visualizing these interactions, 
the resulting differential contacts mirror what we can visually detect in the contact matrices. 
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2. The KR method, common to both 
juicer and cooler tools, provides a 
fast, robust method for individual 
feature calling that appears to 
preserve topology.  

3. Between sample normalization 
methods are primarily used for 
differential region detection and 
implemented when comparing 
different sample conditions 

4.  Between sample normalization 
depends on raw, unnormalized 
interaction frequencies, but are 
readily accessible from both *.hic 
and *.cool files. 

 
Hopefully, now armed with this 
knowledge, you will be well on your way 
towards selecting the analytical pipeline 
that best fits your needs. Should you still 
have questions, however, please feel free 
to reach out to our support team 
(support@cantatabio.com) for further 
guidance. 
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