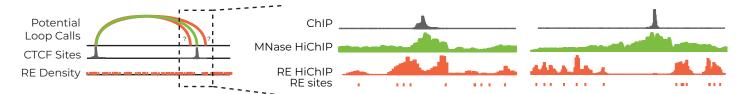


Not All Hi-C Is Created Equal

The Micro-C Difference

Hi-C is a powerful tool for understanding 3D chromosome architecture, how chromatin topology influences cellular function and how topological changes contribute to disease. However, traditional Hi-C, relying on sequence biased restriction enzymes, has significant limitations. The Dovetail® Micro-C Assay addresses many of these limitations.


Dovetail Micro-C Captures More of the Genome

FEATURE: Micro-C produces more uniform coverage of the genome overcoming sequence gaps present in traditional Hi-C data due to low restriction site density.

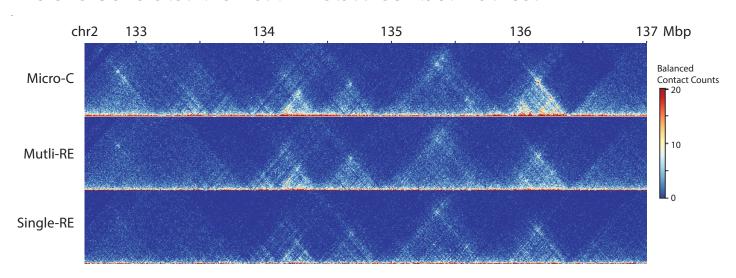
BENEFIT: Capture more chromatin topology across more of the genome.

Dovetail Micro-C More Accurately Captures Biology

FEATURE: Traditional Hi-C is biased by restriction enzyme motif location, which can distort identified topological features. Micro-C's use of the sequence independent enzyme, micrococcal nuclease, eliminates this bias.

BENEFIT: More accurate calling of topological features such as chromatin loops.

Dovetail Micro-C Reduces Overall Experiment Cost


Assay	Total Input (# Cells)	Sequencing (# read pairs)	Total Cost (USD)*	Loops (5 kbp)	Cost per Loop (USD)
Micro-C	1 Million	800 Million	\$3,900	8,649	\$0.45
Multi-RE	5-10 Million	1.2 Billion	\$4,950	4,639	\$1.07
Single-RE	5-10 Million	1.6 Billion	\$8,800	1,597	\$5.57

^{*}Combines assay cost and sequencing cost

FEATURE: Micro-C bolstered signal-to-noise reduces sequencing cost and requires less sample compared to traditional Hi-C.

BENEFIT: Significant savings on sequencing and sample preparation costs without compromising experimental discoveries; in fact, even at lower sequencing coverage, Micro-C detects more loops than traditional Hi-C.

Micro-C Generates the Best-in-Class Contact Matrices

FEATURE: Contact matrices show an enrichment of contacts compared to traditional Hi-C approaches due to Micro-C's greater signal-to-noise. All matrices were generated from 800 million total read pairs and contacts were balanced.

BENEFIT: Increased sensitivity for topological features at lower sequencing depths.

Dovetail Solutions

Leveraging the advantages of the Dovetail Micro-C Assay in Genome-wide or Targeted Approaches.

Application	Micro-C	HiChIP	Pan Promoter Panel
A/B Comparments	/		
TADs	/		
Chromatin Loops	/		
Chromatin Ultrastructure	/		
Protein-Directed Interactions		1	
Enhancer-Promoter Loops			/
Hybrid-Capature Compatible	/		

Publications

The Dovetail Micro-C Assay is enabling new discoveries in fields such as gene regulation, developmental biology and human disease.

Publication	Summary	
MCM complexes are barriers that restrict	The minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusic in G1 phase.	
cohesin-mediated loop extrusion, Dequeker et al., 2022, https://doi.org/10.1038/s4158	MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation.	
6-022-04730-0	MCMs are physical barriers that frequently constrain cohesin translocation <i>in vitro</i> .	
Targeting Swi/SNF ATPases in	The chromatin remodeler SWI/SNF complex is altered in over 20% of cancers and the ATPase subunits can be degreated with PROTAC. **The chromatin remodeler SWI/SNF complex is altered in over 20% of cancers and the complex is altered in the complex is altered in the complex in the cancer and the complex is altered in the cancer and the	
enhancer-addicted prostate cancer, Xiao et al., 2022, https://doi.org/10.1038/s4158	Prostate cancer cells that express AR and FOXA1 are highly sensitive to PROTAC-degredation.	
6-021-04246-z	SWI/SNF ATPase degradation disrupts super-enhancer and promoter looping interactions that wire expression of oncogenes.	
Loss of epigenetic information as a cause of	Cellular responses to double-stranded DNA breaks erode the epigenetic landscape and accelerates the hallmarks of aging.	
mammalian aging, Yang et al., 2023, https://doi.org/10.1016/j.cell.20	These changes are reversible by epigenetic reprogramming, including TAD boundaries and E-P interactions.	
LL.IL.OL/	• By manipulating the epigenome, aging can be driven forward and backward.	